

CPGE – PTSI Mr Pernot

TD Comportement des systèmes mécaniques: RSG

Un roulement à billes est un ensemble de pièces inséré entre deux organes mécaniques en rotation l'un par rapport à l'autre et destiné à diminuer le frottement entre ces deux organes. Il est composé (en général) de quatre éléments : une bague extérieure, une bague intérieure, des éléments roulants (billes, rouleaux ou aiguilles) et une cage qui maintient les éléments roulants à égale distance.

Soit $R(O,\vec{x},\vec{y},\vec{z})$ un repère lié au bâti S_0 . Les deux bagues S_1 et S_2 et la cage S_3 sont en rotation autour de l'axe (O,\vec{z}) par rapport à S_0 . La bille S, de centre C, roule sans glisser en I_1 sur S_1 et en I_2 sur S_2 .

Soit $R_1(O,i,j,\vec{z})$ un repère tel que i ait même direction et même sens que \overrightarrow{OC} .

Données: $\vec{\Omega}(S_1/R) = \omega_1 \vec{z}$, $\vec{\Omega}(S_2/R) = \omega_2 \vec{z}$, $\vec{OI}_1 = r_1 \vec{i}$, $\vec{OI}_2 = r_2 \vec{i}$.

On pose: $\vec{\Omega}(S/R) = \omega \vec{z}$ et $||\vec{V}(C \in S/R)|| = V$.

1 – Déterminer la direction de V(C∈S/R).

2 - Montrer que
$$V = \frac{\omega_1 \Gamma_1 + \omega_2 \Gamma_2}{2}$$
 et que $\omega = \frac{\omega_2 \Gamma_2 - \omega_1 \Gamma_1}{\Gamma_2 - \Gamma_1}$.

3- En exprimant $\vec{V}(C \in S_3/R)$ de deux manières, déterminer $\vec{\Omega}(S_3/R)$ en fonction de V et des données géometriques. En déduire $\vec{\Omega}(S_3/S)$ en fonction de ω_1 , ω_2 et des données géométriques.

Soit le point A tel que $\overrightarrow{CA} = \frac{1}{2} (r_2 - r_1) \hat{j}$.

4 – Déterminer $\vec{V}(A \in S/S_3)$, la vitesse de glissement de la bille S par rapport à la cage S_3 en A, en fonction de V, ω et des données géométriques.