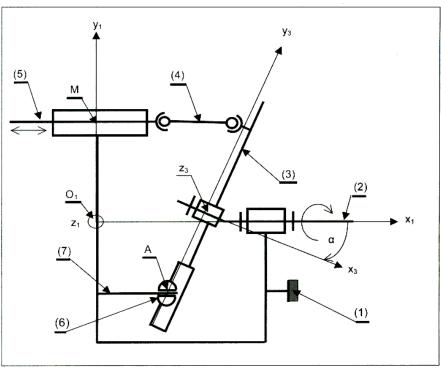
CPGE – PT Mr Pernot

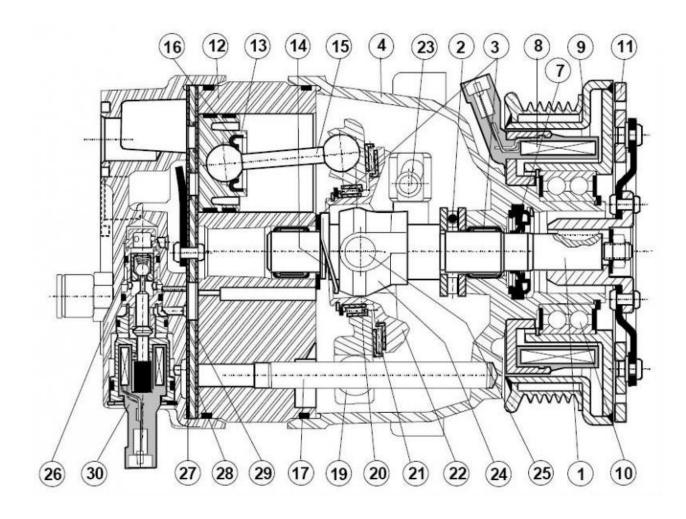

TD Comportement des systèmes mécaniques: hyperstaticité

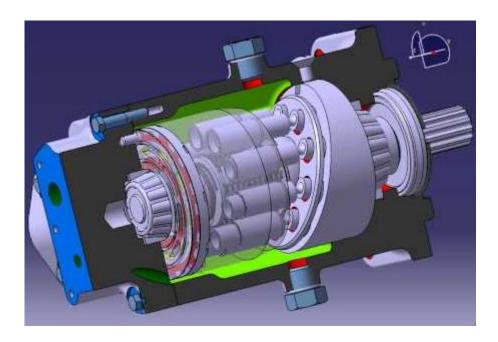
Exercice: pompe à pistons axiaux

La pompe à pistons axiaux représentée ci-dessous possède un arbre d'entrée 2 coudé.

Sa rotation provoque les oscillations du plateau incliné 3 autour de l'axe \vec{z}_3 .

Le mouvement de ce plateau provoque le déplacement axial des pistons 5 également répartis sur un cercle de rayon O₁M. Le plateau est arrêté en rotation par la liaison composée L3/7 que l'on se propose d'analyser (l'axe 7 fait parti du corps de la pompe 1).


Questions:


- A partir de la forme générale du torseur cinématique $\{V(3/6)\}_{A} = \begin{cases} p(3/6) & u(3/6) \\ q(3/6) & v(3/6) \\ r(3/6) & w(3/6) \end{cases}_{A,B_3}$, définir ses composantes en A dans la base B₃.
- Idem pour $\{V(6/7)\}_A$ en A mais dans la base B_1 .
- Définir le torseur cinématique {V (3/7)} de la liaison équivalente L3/7.
- En déduire précisément la nature de la liaison entre 3 et 7.

CPGE – PT Mr Pernot

TD Comportement des systèmes mécaniques: hyperstaticité

Liens intéressant : http://www2c.ac-lille.fr/eiffel/cpge/animation-i.html