

TD – Caractéristiques d'inertie des solides

Meule avec balourd

On considère une meule cylindrique de révolution S_1 , d'axe $(G, \overline{z_{1^*}})$, de masse \mathbf{m} , de rayon \mathbf{R} , et d'épaisseur \mathbf{h} . Cette meule est fixée rigidement sur un axe S_2 avec un défaut d'excentricité \mathbf{e} et un défaut d'alignement $\mathbf{\alpha}$. Deux repères R_1 $(O, \vec{x}_1, \vec{y}_1, \vec{z}_1)$ et R_{1^*} $(O, \vec{x}_{1^*}, \vec{y}_1 = \vec{y}_{1^*}, \vec{z}_{1^*})$, permettant de prendre en compte ces caractéristiques sont définis sur la figure ci-dessous.

1 – Déterminer l'expression de la matrice d'inertie de la meule en G dans la base B_{1*} ($\vec{x}_{1*}, \vec{y}_1 = \vec{y}_{1*}, \vec{z}_{1*}$).

Notation à utiliser :
$$[I(G_{,}S_{1})] = \begin{bmatrix} A^{*} & -F^{*} & -E^{*} \\ -F^{*} & B^{*} & -D^{*} \\ -E^{*} & -D^{*} & C^{*} \end{bmatrix}_{1*}$$

2 – Déterminer l'expression de la matrice d'inertie de la meule en G dans la base $B_1(\vec{x}_1, \vec{y}_1, \vec{z}_1)$.

Notation à utiliser : [I(G,S₁)]=
$$\begin{bmatrix} A_1 & -F_1 & -E_1 \\ -F_1 & B_1 & -D_1 \\ -E_1 & -D_1 & C_1 \end{bmatrix}_1$$

3 – En déduire la matrice d'inertie de la meule en O.